Menu

Unidentified High-Energy Particles Detected Passing through the Antarctic Ice

July 24, 2019 - General
Neutrino concept art

The IceCube Observatory carries the distinction of being the most remote astronomical facility on Earth. Anchored deeply in the ice of Antarctica, in the very definition of the middle of nowhere, the IceCube installation features a high-tech particle neutrino detector designed to search for one of the most elusive particles in the universe.

Neutrinos are the subatomic cousins of electrons. They’re ghostly shadows with no electric charge and an infinitesimal mass. They avoid interactions with matter, which makes them extremely difficult to detect.

Nevertheless, we are swimming in an invisible soup of them every moment of our lives. They are one of the essential elements of creation and have been here since the start. Many astrophysicists believe that dark matter is comprised of primordial neutrinos left over from shortly after the Big Bang, which if true would make them the most common type of particle in the universe.

Electrons and neutrinos both belong to a class of particles called leptons. Leptons are involved with the weak nuclear force, which governs decay in atomic nuclei and creates brand new particles as a result of the transformation. It is in these patterns of decay that neutrinos are formed, and detecting their presence gives scientists a glimpse into the fundamental processes of creation and destruction.

Unlike light particles, neutrinos can escape from even the densest environments. For example, neutrinos from a supernova called 1987A reached the Earth three hours before the light particles emitted, carrying enormous energies harvested from that space-time-ripping event.

The arrival of these types of neutrinos was expected at the IceCube Observatory, and hunting for such particles was one of the main reasons why the facility was erected. But IceCube researchers were not prepared for what they found during a routine survey of data in 2012.

Section: 


Source: origins

Leave a Reply

Your email address will not be published. Required fields are marked *